Package index
-
AddConfInterval()
- Add confidence interval
-
AnPowerlaw()
- A PSD(freq) for a powerlaw with variance 1
-
ApplyFilter()
- Filter time series
-
ApproxNearest()
- approximate a timeseries using the nearest neighbour
-
AvgToBin()
- Bin averaging
-
Bandpass()
- Calculate Weights for a Bandpass Filter
-
BinTimeseries()
- Bin a Timeseries Preserving Empty Bins
-
ClosestElement()
- Get closest element of a vector
-
ColTransparent()
- Modify a color to get brighter and tranparent for the confidence intervals
-
ConfRatio()
- Confidence Interval of ratios
-
ConfVar()
- Provide ChiSquared confidence intervals for ratios
-
DF2Spec()
- Transform a spec_df Object into a spec Object or List of spec Objects
-
FilterSpec()
- Filter a Power Spectrum Object
-
FilterSpecLog()
- Smooth a Spectrum with Evenly Spaced Bins in Logspace
-
FirstElement()
- first element of a vector
-
GetTransferFunction()
- Derives and plots the transfer function (given a filter)
-
GetVarFromSpectra()
- Variance estimate by integrating a part of the spectrum
-
Highpass()
- calculate weights for a bandpass filter
-
InverseFilter()
- Construct the inverse filter in the time domain
-
LLines()
- Add a spectrum to an existing log-log spectral plot.
-
LPlot()
- Log-log spectral plot.
-
LastElement()
- last element of a vector
-
LogSmooth()
- Smooths the spectrum using a log smoother
-
Lowpass()
- Calculate weights for lowpass filter
-
MakeEquidistant()
- Average an irregular timeseries to a regular timeseries
-
MeanSpectrum()
- Weighted mean spectrum
-
MonthlyFromDaily()
- Bin daily values to monthly values
-
NaFillTs()
- NaFill
-
PS.VarUntilF()
- Variance of a powerlaw process if integrated from until frequency f
-
PSP.CorAfterRollmean()
- Numerical correlation of random timeseries with different filtering (running mean)
-
PSP.CorUntilF()
- lowpass filtered expected correlation of powerlaw signal pair
-
SimFromEmpiricalSpec()
- Simulate a random timeseries consistent with an arbitrary numerical power spectrum
-
SimPLS()
- Simulate a random timeseries with a powerlaw spectrum
-
SimPowerlaw()
- Simulate a random timeseries with a powerlaw spectrum
-
SimPowerlawPiecewise()
- Simulate a timeseries with length N which has a spectra consisting of two powerlaws
-
SimProxySeries()
sim.proxy.series()
- Simulate a Proxy Time Series Assuming a Power-Law Power Spectrum of the Climate
-
SimulatePowerlawSignalPair()
- Create a pair of random signals with powerlaw signal and powerlaw noise
-
SlopeFit()
- Fit a power-law to the spectrum
-
Spec2DF()
- Transform Spec Object(s) Into a Dataframe
-
SpecACF()
- Estimate Power Spectra via the Autocovariance Function With Optional Slepian Tapers
-
SpecInterpolate()
- Interpolate spectrum
-
SpecMTM()
- MTM spectral estimator
-
SubsampleTimeseriesBlock()
- Subsample (downsample) timeseries using block averaging#'
-
TrimNA()
- Remove leading and trailing rows of all NA
-
as.data.frame(<spec>)
- Transform a spec Object Into a Dataframe
-
as.spec()
- Make a spec Object
-
as_spec_df()
- Make a spec_df Object
-
gg_spec()
- Plot One or More Spectra with ggplot2
-
is.spectrum()
- Check for spectral object
-
remove.highestFreq()
- Remove high frequencies
-
remove.lowestFreq()
- Remove low frequencies