Skip to contents

All functions

AddConfInterval()
Add confidence interval
AnPowerlaw()
A PSD(freq) for a powerlaw with variance 1
ApplyFilter()
Filter time series
ApproxNearest()
approximate a timeseries using the nearest neighbour
AvgToBin()
Bin averaging
Bandpass()
Calculate Weights for a Bandpass Filter
BinTimeseries()
Bin a Timeseries Preserving Empty Bins
ClosestElement()
Get closest element of a vector
ColTransparent()
Modify a color to get brighter and tranparent for the confidence intervals
ConfRatio()
Confidence Interval of ratios
ConfVar()
Provide ChiSquared confidence intervals for ratios
DF2Spec()
Transform a spec_df Object into a spec Object or List of spec Objects
FilterSpec()
Filter a Power Spectrum Object
FilterSpecLog()
Smooth a Spectrum with Evenly Spaced Bins in Logspace
FirstElement()
first element of a vector
GetTransferFunction()
Derives and plots the transfer function (given a filter)
GetVarFromSpectra()
Variance estimate by integrating a part of the spectrum
Highpass()
calculate weights for a bandpass filter
InverseFilter()
Construct the inverse filter in the time domain
LLines()
Add a spectrum to an existing log-log spectral plot.
LPlot()
Log-log spectral plot.
LastElement()
last element of a vector
LogSmooth()
Smooths the spectrum using a log smoother
Lowpass()
Calculate weights for lowpass filter
MakeEquidistant()
Average an irregular timeseries to a regular timeseries
MeanSpectrum()
Weighted mean spectrum
MonthlyFromDaily()
Bin daily values to monthly values
NaFillTs()
NaFill
PS.VarUntilF()
Variance of a powerlaw process if integrated from until frequency f
PSP.CorAfterRollmean()
Numerical correlation of random timeseries with different filtering (running mean)
PSP.CorUntilF()
lowpass filtered expected correlation of powerlaw signal pair
SimFromEmpiricalSpec()
Simulate a random timeseries consistent with an arbitrary numerical power spectrum
SimPLS()
Simulate a random timeseries with a powerlaw spectrum
SimPowerlaw()
Simulate a random timeseries with a powerlaw spectrum
SimPowerlawPiecewise()
Simulate a timeseries with length N which has a spectra consisting of two powerlaws
SimProxySeries() sim.proxy.series()
Simulate a Proxy Time Series Assuming a Power-Law Power Spectrum of the Climate
SimulatePowerlawSignalPair()
Create a pair of random signals with powerlaw signal and powerlaw noise
SlopeFit()
Fit a power-law to the spectrum
Spec2DF()
Transform Spec Object(s) Into a Dataframe
SpecACF()
Estimate Power Spectra via the Autocovariance Function With Optional Slepian Tapers
SpecInterpolate()
Interpolate spectrum
SpecMTM()
MTM spectral estimator
SubsampleTimeseriesBlock()
Subsample (downsample) timeseries using block averaging#'
TrimNA()
Remove leading and trailing rows of all NA
as.data.frame(<spec>)
Transform a spec Object Into a Dataframe
as.spec()
Make a spec Object
as_spec_df()
Make a spec_df Object
gg_spec()
Plot One or More Spectra with ggplot2
is.spectrum()
Check for spectral object
remove.highestFreq()
Remove high frequencies
remove.lowestFreq()
Remove low frequencies