Package index
-
AddConfInterval() - Add confidence interval
-
AnPowerlaw() - A PSD(freq) for a powerlaw with variance 1
-
ApplyFilter() - Filter time series
-
ApproxNearest() - approximate a timeseries using the nearest neighbour
-
AvgToBin() - Bin averaging
-
Bandpass() - Calculate Weights for a Bandpass Filter
-
BinTimeseries() - Bin a Timeseries Preserving Empty Bins
-
ClosestElement() - Get closest element of a vector
-
ColTransparent() - Modify a color to get brighter and tranparent for the confidence intervals
-
ConfRatio() - Confidence Interval of ratios
-
ConfVar() - Provide ChiSquared confidence intervals for ratios
-
DF2Spec() - Transform a spec_df Object into a spec Object or List of spec Objects
-
FilterSpec() - Filter a Power Spectrum Object
-
FilterSpecLog() - Smooth a Spectrum with Evenly Spaced Bins in Logspace
-
FirstElement() - first element of a vector
-
GetTransferFunction() - Derives and plots the transfer function (given a filter)
-
GetVarFromSpectra() - Variance estimate by integrating a part of the spectrum
-
Highpass() - calculate weights for a bandpass filter
-
InverseFilter() - Construct the inverse filter in the time domain
-
LLines() - Add a spectrum to an existing log-log spectral plot.
-
LPlot() - Log-log spectral plot.
-
LastElement() - last element of a vector
-
LogSmooth() - Smooths the spectrum using a log smoother
-
Lowpass() - Calculate weights for lowpass filter
-
MakeEquidistant() - Average an irregular timeseries to a regular timeseries
-
MeanSpectrum() - Weighted mean spectrum
-
MonthlyFromDaily() - Bin daily values to monthly values
-
NaFillTs() - NaFill
-
PS.VarUntilF() - Variance of a powerlaw process if integrated from until frequency f
-
PSP.CorAfterRollmean() - Numerical correlation of random timeseries with different filtering (running mean)
-
PSP.CorUntilF() - lowpass filtered expected correlation of powerlaw signal pair
-
SimFromEmpiricalSpec() - Simulate a random timeseries consistent with an arbitrary numerical power spectrum
-
SimPLS() - Simulate a random timeseries with a powerlaw spectrum
-
SimPowerlaw() - Simulate a random timeseries with a powerlaw spectrum
-
SimPowerlawPiecewise() - Simulate a timeseries with length N which has a spectra consisting of two powerlaws
-
SimProxySeries()sim.proxy.series() - Simulate a Proxy Time Series Assuming a Power-Law Power Spectrum of the Climate
-
SimulatePowerlawSignalPair() - Create a pair of random signals with powerlaw signal and powerlaw noise
-
SlopeFit() - Fit a power-law to the spectrum
-
Spec2DF() - Transform Spec Object(s) Into a Dataframe
-
SpecACF() - Estimate Power Spectra via the Autocovariance Function With Optional Slepian Tapers
-
SpecInterpolate() - Interpolate spectrum
-
SpecMTM() - MTM spectral estimator
-
SubsampleTimeseriesBlock() - Subsample (downsample) timeseries using block averaging#'
-
TrimNA() - Remove leading and trailing rows of all NA
-
as.data.frame(<spec>) - Transform a spec Object Into a Dataframe
-
as.spec() - Make a spec Object
-
as_spec_df() - Make a spec_df Object
-
gg_spec() - Plot One or More Spectra with ggplot2
-
is.spectrum() - Check for spectral object
-
remove.highestFreq() - Remove high frequencies
-
remove.lowestFreq() - Remove low frequencies