Get error from proxy.error.var object
GetProxyError.Rd
Get error from proxy.error.var object
Arguments
- var.obj
timescale dependent variance object from IntegrateErrorSpectra
- timescale
the temporal resolution at which the proxy values are being interpreted
- exclude
character vector of error components to exclude from the total
- include.f.zero
include or exclude power at nu = 0
- format
format of the output
Examples
spec.pars <- GetSpecPars("Mg_Ca", tau_p = 1 / 12, phi_c = 0, seas.amp = 4, T = 100 * 101)
spec.obj <- do.call(ProxyErrorSpectrum, spec.pars)
#> Warning: Rounding T to 10100 so that T is an odd integer multiple of delta_t
PlotSpecError(spec.obj)
#> Warning: There were 4 warnings in `summarise()`.
#> The first warning was:
#> ℹ In argument: `max.spec = max(spec, na.rm = TRUE)`.
#> ℹ In group 9: `component = "Climate"` and `ax.grp = "nu == 0"`.
#> Caused by warning in `max()`:
#> ! no non-missing arguments to max; returning -Inf
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 3 remaining warnings.
#> Joining with `by = join_by(component, ax.grp)`
#> Warning: log-10 transformation introduced infinite values.
#> `geom_line()`: Each group consists of only one observation.
#> ℹ Do you need to adjust the group aesthetic?
var.obj <- IntegrateErrorSpectra(spec.obj)
PlotTSDVariance(var.obj)
#> Warning: Removed 8 rows containing non-finite outside the scale range (`stat_align()`).
GetProxyError(var.obj, timescale = 100)
#> smoothed.resolution component f.zero inc.f.zero
#> 1 100 Aliasing.seasonal 0.0003928943 0.003948539
#> 2 100 Aliasing.stochastic 0.0251216653 0.252469612
#> 3 100 Bioturbation 0.0000000000 0.525258573
#> 4 100 Calibration.unc. 0.3000000000 0.300000000
#> 5 100 Individual.variation 0.0273861279 0.275227179
#> 6 100 Meas.error 0.0260000000 0.261296766
#> 7 100 Reference.climate NA 0.927987688
#> 8 100 Seasonal.bias 1.9772250389 1.980631450
#> 9 100 Seasonal.bias.unc. 0.0000000000 0.000000000
#> 10 100 Total.error 2.0003689927 2.120514090
#> exl.f.zero
#> 1 0.003928943
#> 2 0.251216653
#> 3 0.525258573
#> 4 0.000000000
#> 5 0.273861279
#> 6 0.260000000
#> 7 NA
#> 8 0.116112383
#> 9 0.000000000
#> 10 0.703636197