Get error components for stochastic climate signal
S_E.Rd
Get error components for stochastic climate signal
Usage
S_E(
nu,
tau_s,
tau_b,
tau_r,
T,
delta_t,
N,
n.k,
clim.spec.fun,
clim.spec.fun.args,
n.nu.prime = 1000,
plot.integral = FALSE
)
Arguments
- nu
frequency
- tau_s
sediment slice thickness in years (layer.width / sedimentation rate)
- tau_b
timescale of bioturbation (bioturbation depth / sedimentation rate) (L/sr)
- tau_r
width of moving average filter that represents the "interpreted" resolution of the timeseries
- T
length of a finite time series, e.g. 1e04
- delta_t
sampling frequency of the sediment core / climate timeseries
- N
number of signal carriers (e.g. individual foraminifera)
- n.k
the number of aliasers used when estimating the error spectrum of the stochastic climate signal. Defaults to 15, does not normally need to be adjusted.
- clim.spec.fun
a function to return climate power spectral density as a function of frequency, nu
- clim.spec.fun.args
arguments to the named climate power spectrum function
- n.nu.prime
number of discrete frequencies at which to evaluate the PSD of the error
- plot.integral
Plot the PSD of the error of the bioturbated climate timeseries. This PSD is numerically integrated to give the variance for the aliasing of climate variation.
Examples
spec.pars <- GetSpecPars("Mg_Ca", phi_c = pi, delta_phi_c = pi,
sig.sq_a = 0.1, tau_p = 1/12)
spec.pars$nu <- GetNu(spec.pars$T, spec.pars$delta_t)
do.call(S_E, spec.pars[names(spec.pars) %in% names(formals(S_E))])
#> $nu
#> [1] -0.0049504950 -0.0048514851 -0.0047524752 -0.0046534653 -0.0045544554
#> [6] -0.0044554455 -0.0043564356 -0.0042574257 -0.0041584158 -0.0040594059
#> [11] -0.0039603960 -0.0038613861 -0.0037623762 -0.0036633663 -0.0035643564
#> [16] -0.0034653465 -0.0033663366 -0.0032673267 -0.0031683168 -0.0030693069
#> [21] -0.0029702970 -0.0028712871 -0.0027722772 -0.0026732673 -0.0025742574
#> [26] -0.0024752475 -0.0023762376 -0.0022772277 -0.0021782178 -0.0020792079
#> [31] -0.0019801980 -0.0018811881 -0.0017821782 -0.0016831683 -0.0015841584
#> [36] -0.0014851485 -0.0013861386 -0.0012871287 -0.0011881188 -0.0010891089
#> [41] -0.0009900990 -0.0008910891 -0.0007920792 -0.0006930693 -0.0005940594
#> [46] -0.0004950495 -0.0003960396 -0.0002970297 -0.0001980198 -0.0000990099
#> [51] 0.0000000000 0.0000990099 0.0001980198 0.0002970297 0.0003960396
#> [56] 0.0004950495 0.0005940594 0.0006930693 0.0007920792 0.0008910891
#> [61] 0.0009900990 0.0010891089 0.0011881188 0.0012871287 0.0013861386
#> [66] 0.0014851485 0.0015841584 0.0016831683 0.0017821782 0.0018811881
#> [71] 0.0019801980 0.0020792079 0.0021782178 0.0022772277 0.0023762376
#> [76] 0.0024752475 0.0025742574 0.0026732673 0.0027722772 0.0028712871
#> [81] 0.0029702970 0.0030693069 0.0031683168 0.0032673267 0.0033663366
#> [86] 0.0034653465 0.0035643564 0.0036633663 0.0037623762 0.0038613861
#> [91] 0.0039603960 0.0040594059 0.0041584158 0.0042574257 0.0043564356
#> [96] 0.0044554455 0.0045544554 0.0046534653 0.0047524752 0.0048514851
#> [101] 0.0049504950
#>
#> $inf.N.part
#> [1] 16.8306892 17.0020892 17.3430234 17.8497763 18.5168086 19.3367981
#> [7] 20.3006942 21.3977849 22.6157769 23.9408880 25.3579515 26.8505320
#> [13] 28.4010520 29.9909285 31.6007186 33.2102743 34.7989040 36.3455407
#> [19] 37.8289156 39.2277357 40.5208647 41.6875056 42.7073841 43.5609317
#> [25] 44.2294686 44.6953846 44.9423195 44.9553438 44.7211408 44.2281966
#> [31] 43.4670020 42.4302783 41.1132419 39.5139306 37.6336256 35.4774158
#> [37] 33.0549728 30.3816251 27.4798487 24.3813075 21.1295661 17.7835060
#> [43] 14.4212056 11.1434339 8.0747606 5.3585480 3.1403999 1.5351555
#> [49] 0.5790584 0.1833695 NaN 0.1833695 0.5790584 1.5351555
#> [55] 3.1403999 5.3585480 8.0747606 11.1434339 14.4212056 17.7835060
#> [61] 21.1295661 24.3813075 27.4798487 30.3816251 33.0549728 35.4774158
#> [67] 37.6336256 39.5139306 41.1132419 42.4302783 43.4670020 44.2281966
#> [73] 44.7211408 44.9553438 44.9423195 44.6953846 44.2294686 43.5609317
#> [79] 42.7073841 41.6875056 40.5208647 39.2277357 37.8289156 36.3455407
#> [85] 34.7989040 33.2102743 31.6007186 29.9909285 28.4010520 26.8505320
#> [91] 25.3579515 23.9408880 22.6157769 21.3977849 20.3006942 19.3367981
#> [97] 18.5168086 17.8497763 17.3430234 17.0020892 16.8306892
#>
#> $finite.N.part
#> [1] 6.37409
#>